Thermodynamic analyses on hybrid sorption cycles for low-grade heat storage and cogeneration of power and refrigeration
Alexis Godefroy,
Maxime Perier-Muzet and
Nathalie Mazet
Applied Energy, 2019, vol. 255, issue C
Abstract:
This paper investigates three ways of coupling a solid/gas sorption refrigeration cycle with a Rankine cycle to create innovative hybrid cycles enabling power and refrigeration cogeneration with intrinsic energy storage. A new methodology has been developed to analyze these hybrid cycles and assess five relevant performance criteria (required heat source temperature, energy efficiency, exergy efficiency, power production ratio, and exergy storage density). Screening of 103 reactive salts implemented in the different hybrid cycle configurations highlights the most favorable configuration and reagent to meet the requirements of various applications. Analyses show that energy and exergy efficiencies can reach 0.61 and 0.40, respectively. Exergy storage density ranges from 142 to 640 kJ/kgNH3 when the heat source temperature is increased from 107 °C to 250 °C.
Keywords: Thermochemical cycles; Sorption; Hybrid cycles; Power and refrigeration cogeneration; Thermal storage; Thermodynamic analysis (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919314382
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:255:y:2019:i:c:s0306261919314382
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113751
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().