EconPapers    
Economics at your fingertips  
 

Multi-step reinforcement learning for model-free predictive energy management of an electrified off-highway vehicle

Quan Zhou, Ji Li, Bin Shuai, Huw Williams, Yinglong He, Ziyang Li, Hongming Xu and Fuwu Yan

Applied Energy, 2019, vol. 255, issue C

Abstract: The energy management system of an electrified vehicle is one of the most important supervisory control systems which manages the use of on-board energy resources. This paper researches a ‘model-free’ predictive energy management system for a connected electrified off-highway vehicle. A new reinforcement learning algorithm with the capability of ‘multi-step’ learning is proposed to enable the all-life-long online optimisation of the energy management control policy. Three multi-step learning strategies (Sum-to-Terminal, Average-to-Neighbour Recurrent-to-Terminal) are researched for the first time. Hardware-in-the-loop tests are carried out to examine the control functionality for real application of the proposed ‘model-free’ method. The results show that the proposed method can continuously improve the vehicle’s energy efficiency during the real-time hardware-in-the-loop test, which increased from the initial level of 34% to 44% after 5 h’ 35-step learning. Compared with a well-designed model-based predictive energy management control policy, the model-free predictive energy management method can increase the prediction horizon length by 71% (from 35 to 65 steps with 1 s interval in real-time computation) and can save energy by at least 7.8% for the same driving conditions.

Keywords: Model-free predictive control; Energy management; Multi-step reinforcement learning; Markov decision problem; Hybrid electric vehicle (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (29)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919314424
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:255:y:2019:i:c:s0306261919314424

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113755

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919314424