Performance enhancement of a high temperature proton exchange membrane fuel cell by bottomed-baffles in bipolar-plate channels
Shiang-Wuu Perng,
Horng-Wen Wu,
Yi-Bin Chen and
Yi-Kai Zeng
Applied Energy, 2019, vol. 255, issue C
Abstract:
Since HT-PEMFCs (high temperature proton exchange membrane fuel cell) operate above 120 °C, it can vaporize the liquid water produced at cathode to simplify the water management system and has better tolerance of CO in the PBI (polybenzimidazole) membrane. This study utilized a three-dimensional numerical model to explore the cell performance of HT-PEMFCs (high temperature proton exchange membrane fuel cells) under the installation of various-numbers baffles on the bottom of the anode and cathode bipolar-plate channels by the SIMPLE-C algorithm. Furthermore, this study accounted for the pressure drop through the bipolar-plate channel to determine the net HT-PEMFC power. The numerical results display that the highest net HT-PEMFC power exists as the number of bottomed-baffle is five, and the net HT-PEMFC power for five bottomed-baffles is higher than that for without baffles by 8%. The present simulation is verified by the HT-PEMFC performance measured from the in-house experiment to show that the CFD results reasonably consist with the measured data of in-house experiments. In addition, the five bottomed-baffle channel has lower total impedance than smooth channel resulted from an electrochemical impedance spectroscopy (EIS) test.
Keywords: High temperture proton exchange membrane fuel cell; Bottomed-baffles; Net HT-PEMFC power; Three-dimensional HT-PEMFC model; Polarization performance; Electrochemical impedance spectroscopy (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919315028
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:255:y:2019:i:c:s0306261919315028
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113815
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().