EconPapers    
Economics at your fingertips  
 

Thermal performance and economic analysis of supercritical Carbon Dioxide cycles in combined cycle power plant

Dhinesh Thanganadar, Faisal Asfand and Kumar Patchigolla

Applied Energy, 2019, vol. 255, issue C

Abstract: A closed-loop, indirect, supercritical Carbon Dioxide (sCO2) power cycle is attractive for fossil-fuel, solar thermal and nuclear applications owing to its ability to achieve higher efficiency, and compactness. Commercial Gas Turbines (GT’s) are optimised to yield maximum performance with a conventional steam Rankine cycle. In order to explore the full potential of a sCO2 cycle the whole plant performance needs to be considered. This study analyses the maximum performance and cost of electricity for five sCO2 cascaded cycles. The plant performance is improved when the GT pressure ratio is considered as a design variable to a GT to optimise the whole plant performance. Results also indicate that each sCO2 Brayton cycle considered, attained maximum plant efficiency at a different GT pressure ratio. The optimum GT pressure ratio to realise the maximum cost reduction in sCO2 cycle was higher than the equivalent steam Rankine cycle. Performance maps were developed for four high efficient cascaded sCO2 cycles to estimate the specific power and net efficiency as a function of GT turbine inlet temperature and pressure ratio. The result of multi-objective optimisation in the thermal and cost (c$/kWh) domains and the Pareto fronts of the different sCO2 cycles are presented and compared. A novel sCO2 cycle configuration is proposed that provides ideal-temperature glide at the bottoming cycle heat exchangers and the efficiency of this cycle, integrated with a commercial SGT5-4000F machine in lieu of a triple-pressure steam Rankine cycle, is higher by 1.4 percentage point.

Keywords: Supercritical CO2 cycle; Gas turbine; Combined cycle; Multi-objective optimisation; Optimum pressure ratio; sCO2 (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919315235
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:255:y:2019:i:c:s0306261919315235

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113836

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:255:y:2019:i:c:s0306261919315235