EconPapers    
Economics at your fingertips  
 

Mesoscopic modeling of transport resistances in a polymer-electrolyte fuel-cell catalyst layer: Analysis of hydrogen limiting currents

Yu-Tong Mu, Adam Z. Weber, Zhao-Lin Gu and Wen-Quan Tao

Applied Energy, 2019, vol. 255, issue C

Abstract: Understanding transport resistances in a polymer-electrolyte fuel cell (PEFC) catalyst layer (CL) is essential to mitigate the unexpected voltage loss when using low loadings of precious metals. In this paper, we explore through mesoscopic modeling the quantification analyses of the transport resistances in CL as derived using hydrogen-pump limiting current. Numerical treatments on the conjugated interfacial conditions at interfaces of ionomer/pore and Pt/ionomer are proposed to describe the mesoscopic transport processes of hydrogen and proton. Characterizations of the reconstructed microstructure of CL are performed. Parameter analyses on the influences of the critical transport properties such as the permeation coefficient and the dissolution and adsorption reaction rates at the surfaces of ionomer/pore and Pt/ionomer on the local transport resistance are presented. It is found that the local transport resistance is mainly originated from the diffusion resistance of the ionomer thin-film, which is more resistive than its bulk analogue with its permeation coefficient fitted to be 5.9% of the bulk one. The interfacial transport resistances and the diffusion resistance are coupled. The local transport resistance increases with I/C ratio due to thicker ionomer coated on the particles. Higher Pt/C ratio and bare carbon fraction lead to higher local transport resistance since the ionomer loading relative to Pt roughness factor decreases. The local transport resistance decreases with the porosity. The contribution of pores to the CL resistance, which decreases with the porosity, is comparatively small at low loadings.

Keywords: PEFC; Local transport resistance; Low-loaded platinum; Catalyst layer; Lattice Boltzmann method (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191931582X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:255:y:2019:i:c:s030626191931582x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113895

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:255:y:2019:i:c:s030626191931582x