EconPapers    
Economics at your fingertips  
 

An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction

Haijun Ruan, Jiuchun Jiang, Bingxiang Sun, Xiaojia Su, Xitian He and Kejie Zhao

Applied Energy, 2019, vol. 256, issue C

Abstract: Low-temperature preheating of batteries is fundamental to ensure that electric vehicles exhibit excellent performance in all-climate conditions. Direct current for discharge is presented to rapidly preheat batteries due to its simple implementation and high heat generation compared to alternating current. Experimental results reveal that the heating time is significantly reduced while capacity degradation is dramatically increased, with the decreasing discharge heating voltage. A simple fade model to capture battery capacity loss is proposed and accurately demonstrated under direct-current discharge heating. Pareto front for dual crucial yet conflicting objectives, heating time and capacity loss, is obtained using the multi-objective genetic algorithm and the effect of weighting coefficient on heating performance is discussed, thus proposing an optimal internal-heating strategy. The battery is rapidly heated from −30 °C to 2.1 °C within 103 s and the capacity loss is only 1.4% after 500 repeatedly heating, implying substantially no lifetime deterioration. At 0.8 state-of-charge, the heated battery can offer 8.7/32.7 times the discharge/charge power and 62.46 times the discharge energy of the unheated battery, indicating a significant performance boost. The proposed optimal heating method, thanks to short heating time and no substantial lifetime reduction, yields great potential to rapidly boost battery performance in extremely cold conditions.

Keywords: Lithium-ion battery; Low temperature; Optimal heating; Battery fade model; Battery heat generation model; Direct-current discharge heating voltage (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919314849
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:256:y:2019:i:c:s0306261919314849

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113797

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919314849