Understanding citizen perspectives on open urban energy data through the development and testing of a community energy feedback system
Abigail Francisco and
John E. Taylor
Applied Energy, 2019, vol. 256, issue C
Abstract:
With the rise of advanced and affordable sensors offering continuous monitoring of city infrastructure, cities are increasingly seeking to become more ‘smart’ and are adopting data-driven approaches to help meet sustainability goals. In the area of building energy efficiency, closely coupled with this effort is the prevalence of building energy benchmarking policies, which require public disclosure of vast new quantities of building-level energy data at urban scales (i.e., open urban energy data). While existing research efforts have focused on the potential of this data to transform energy efficiency markets and investments in the real estate sector, little research has been dedicated to assessing this information’s value to the general public. Given that achieving energy reductions in the built environment will require not only energy efficiency investments, but also greater awareness, engagement, and action from ordinary citizens, we study the potential of open urban energy data in providing citizen benefits. Energy-cyber-physical systems offer a pertinent framework to link data from the virtual world to citizens’ physical reality in order to improve their understanding and decision making. Adopting an energy-cyber-physical system perspective, we aim to connect open urban energy data to citizens through the development and evaluation of a novel community-scale energy feedback system. This mobile cyber-physical system transforms building-level electricity consumption and production data across Georgia Tech’s campus into a mobile application consisting of three features: spatial feedback, energy supply feedback, and energy consumption feedback. Augmented-reality visualization elements are integrated into the system, providing Georgia Tech community members a direct link between their experienced physical environment and data stored in the virtual world. Applying a user-centered design approach, prospective users evaluate the system via thinking aloud sessions and user surveys to assess understandings and perceptions of open urban energy data for the Georgia Tech campus. The results contribute to literature seeking to create energy feedback systems at the community-scale and expand research investigating citizen reactions to and opinions of open urban energy data. This research is an integral step to further engagement and participation from the public to help achieve a sustainable and citizen-valued energy future.
Keywords: Citizen engagement; Community energy; Cyber-physical systems; Energy feedback; Open data (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919314916
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:256:y:2019:i:c:s0306261919314916
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113804
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().