EconPapers    
Economics at your fingertips  
 

Accelerated fading recognition for lithium-ion batteries with Nickel-Cobalt-Manganese cathode using quantile regression method

Caiping Zhang, Yubin Wang, Yang Gao, Fang Wang, Biqiang Mu and Weige Zhang

Applied Energy, 2019, vol. 256, issue C

Abstract: The requirement for energy density of lithium-ion batteries becomes more urgent due to the rising demand for driving range of electric vehicles in recent years. Meanwhile, the performance stability of batteries with high energy densities tends to deteriorate, leading to accelerating degradation and safety issues. As a result, it is critical to explore the reasons that yield the sudden degradation and to recognize the degradation knee point of Nickel-Cobalt-Manganese batteries commonly used for electric vehicles. Existing results have disclosed that the lithium deposition of negative electrode dominates the sudden degradation of battery capacity. This paper extracts key parameters that characterize the aging status to facilitate knee point recognition in engineering practice. Furthermore, a novel method that integrates quantile regression and Monte Carlo simulation method to identify the accelerated fading knee point is introduced. The dynamic safety boundary determination method for the whole battery lifetime is proposed to update and monitor the safety zone. It is verified by experiments that the recognition results of capacity degradation knee point appear within 90–95% capacity range at 25 °C, 35 °C and 45 °C conditions, which can provide an early warning before the battery fails. Using the proposed method for recognizing the sudden degradation of capacity, recognition result is effective even if the input is disturbed and has strong reliability and stability under different conditions. It is helpful to promote the sustainable and stable development of the electric vehicles and improve advanced applied energy technologies.

Keywords: Nickel-Cobalt-Manganese lithium-ion battery; Accelerated aging; Sudden degradation; Recognition; Quantile regression (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919315284
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:256:y:2019:i:c:s0306261919315284

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113841

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919315284