EconPapers    
Economics at your fingertips  
 

Experimental investigation of an ammonia-water-hydrogen diffusion absorption refrigerator

Ahmad Najjaran, James Freeman, Alba Ramos and Christos N. Markides

Applied Energy, 2019, vol. 256, issue C

Abstract: Diffusion absorption refrigeration (DAR) is a small-scale cooling technology that can be driven purely by thermal energy without the need for electrical or mechanical inputs. In this work, a detailed experimental evaluation was undertaken of a newly-proposed DAR unit with a nominal cooling capacity of 100 W, aimed at solar-driven cooling applications in warm climates. Electrical cartridge heaters were used to provide the thermal input which was varied in the range 150–700 W, resulting in heat source temperatures of 175–215 °C measured at the generator. The cooling output during steady-state operation was determined from the power consumed by an electric heater used to maintain constant air temperature in an insulated box constructed around the evaporator. Tests were performed with the DAR system configured with the default manufacturer’s settings (22 bar charge pressure and 30% ammonia concentration). The measured cooling output (to air) across the range of generator heat inputs was 24–108 W, while the coefficient of performance (COP) range was 0.11–0.26. The maximum COP was obtained at a generator heat input of 300 W. Results were compared to performance predictions from a steady-state thermodynamic model of the DAR cycle, showing a reasonable level of agreement at the nominal design point of the system, but noteworthy deviations at part-load/off-design conditions. Temperature measurements from the experimental apparatus were used to evaluate assumptions used in the estimation of the model state point parameters and examine their influence on the predicted system performance.

Keywords: Diffusion absorption refrigeration; Absorption cooling; Ammonia-water; Coefficient of performance; Part-load operation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919315867
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:256:y:2019:i:c:s0306261919315867

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113899

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919315867