Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent
Masood S. Alivand,
Omid Mazaheri,
Yue Wu,
Geoffrey W. Stevens,
Colin A. Scholes and
Kathryn A. Mumford
Applied Energy, 2019, vol. 256, issue C
Abstract:
The energy penalty is a primary limitation for the implementation of the aqueous solvents for large-scale post-combustion CO2 capture processes. In this study, a novel aqueous-based phase change solvent, composed of potassium glycinate (GlyK, reactive species), water (H2O, solvent) and dimethylformamide (DMF, antisolvent) was developed to improve the energy efficiency of CO2 capture. To examine the role of the antisolvent, a series of aqueous-based amino acid solvents (GlyK-X) with different DMF:H2O (X) volume ratios was prepared, fully characterized and assessed. It was observed that a CO2-free phase appeared at the top of the aqueous-based amino acid GlyK-X solvents after CO2 absorption which can be easily separated and recycled to the absorption column and save energy. The results showed that the GlyK-60 solvent with DMF:H2O volume ratio of 60:40 had a very high CO2-free phase volume (63%). Moreover, the GlyK-60 solvent exhibited 26.1% (0.433–0.546 mol CO2/mol GlyK) enhancement in CO2 absorption capacity, 38.5% (130–80 min) decrease in regeneration time and 59.1% reduction in relative heat duty compared to the conventional aqueous GlyK solvent. Overall, the outcomes confirmed that the aqueous-based phase change GlyK-60 solvent is a viable solvent option for large-scale CO2 capture with extra-low energy consumption and a key to the success of Paris Climate Accord.
Keywords: CO2 capture; DMF; Amino acid; Aqueous-based; Phase change solvent; Energy reduction (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919315983
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:256:y:2019:i:c:s0306261919315983
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113911
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().