Voltage regulation challenges with unbalanced PV integration in low voltage distribution systems and the corresponding solution
Licheng Wang,
Ruifeng Yan and
Tapan Kumar Saha
Applied Energy, 2019, vol. 256, issue C
Abstract:
Due to random connection of small-size single-phase rooftop photovoltaic (PV) generators in residential areas, low voltage distribution systems tend to have unbalanced PV integration across phases. In such situations, traditional reactive power compensation methods may cause unintended Voltage-Reactive Power responses across phases due to line coupling, which consequently affects their effectiveness on overvoltage mitigation. Such overvoltage problems significantly hinder the future integration of clean and renewable solar energy resources in power networks. In this paper, the limitations of traditional methods in PV imbalance scenarios are revealed and comprehensively analyzed by a voltage sensitivity method for the first time. On this basis, an innovative joint centralized-decentralized method is developed to overcome the PV imbalance-induced voltage regulation challenge. Specifically, the inverter’s reactive power response to PV power variations in different phases is adaptively scheduled in order to avoid adverse effect of inter-phase Voltage-Reactive Power interaction on voltage regulation. The effectiveness of the proposed method is validated by time-series simulations with recorded data and a real-life low voltage distribution system in Australia. With the traditional method (i.e. power factor droop control strategy), 93 minutes’ overvoltage can be observed in the case study, which will trigger overvoltage protection and disconnect PV inverters from the grid. While, the proposed method can always control the system voltage within the allowable range, and it consequently avoids PV disconnection. By solving this bottleneck issue, more PV systems can be integrated into distribution networks, which consequently contributes to CO2 emission reduction in future.
Keywords: Rooftop photovoltaic (PV) generator; Var compensation; Unbalanced low voltage distribution systems; Centralized-decentralized method; Voltage regulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919316149
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316149
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113927
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().