EconPapers    
Economics at your fingertips  
 

A comprehensive proton exchange membrane fuel cell system model integrating various auxiliary subsystems

Zirong Yang, Qing Du, Zhiwei Jia, Chunguang Yang, Jin Xuan and Kui Jiao

Applied Energy, 2019, vol. 256, issue C

Abstract: A comprehensive proton exchange membrane fuel cell (PEMFC) system model is developed, including a pseudo two-dimensional transient multiphase stack model, a one-dimensional transient multiphase membrane humidifier model, a one-dimensional electrochemical hydrogen pump model, an air compressor model with proportion-integral-derivative control and a ribbon-tubular fin radiator model. All sub-models have been rigorously validated against experimental data to guarantee the system model accuracy. The effects of stack operating temperature, gas flow pattern and humidifier structural design are investigated to cast insights into the interaction among stack and auxiliary subsystems. The results indicate that the stack is successfully maintained at required operating temperatures (60 °C, 70 °C, 80 °C) with help of the radiator when the whole system starts from ambient temperature (25 °C). However, the stack is likely to suffer from membrane dehydration when operated at 70 °C, and the problem becomes more severe at 80 °C, causing significant performance deterioration. The water and temperature distribution inside the system are further demonstrated. The co-current flow pattern contributes to better water utilization of the whole system which may lead to higher output performances. But the counter-current flow pattern has positive effects on parameter distribution uniformity inside fuel cell, which is beneficial for the stack durability. As regards the membrane dehydration, it is found that optimizing membrane humidifier area does not fundamentally solve the problem. Increasing humidifier area contributes to higher water vapor transfer rate, however, it results in much slower humidification responses.

Keywords: PEMFC system; Various auxiliary subsystems; Membrane dehydration; Counter-current flow; Water utilization (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919316460
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316460

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113959

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316460