Economic and environmental performances of organic photovoltaics with battery storage for residential self-consumption
Marios D. Chatzisideris,
Pernille K. Ohms,
Nieves Espinosa,
Frederik C. Krebs and
Alexis Laurent
Applied Energy, 2019, vol. 256, issue C
Abstract:
Recent economic developments have signalled that self-consumption of photovoltaics (PV)-generated electricity could be financially more attractive than exporting it to the grid in many countries. As an emerging PV technology, organic photovoltaics (OPV) have been recognized as potential bearer of economic and environmental gains. Yet, could OPV deliver a profitable investment and environmental impact reductions in the context of residential electricity self-consumption? Here, we conduct a study of unprecedented scoping that combines both economic analysis and life cycle assessment to gauge OPV self-consumption with or without battery storage for household settings. The upscaling of OPV technologies from pilot- to industrial scale was modelled, and we used the two contrasting cases of Denmark and Greece to identify potential patterns. Our economic results indicate that the addition of battery storage is not financially viable unless battery costs are reduced by more than 10% for Greece and 30% for Denmark. Furthermore, we identify OPV cost thresholds of 0.9 €/Wp for Denmark and 1.6 €/Wp for Greece, below which OPV-battery systems are more cost-effective than OPV systems without battery. Building on the economic analysis, we find that battery storage can improve the environmental performances of OPV systems under certain conditions on the battery costs, the capacity of the cost-optimal OPV-battery system, and the environmental impacts of the battery. Furthermore, the composition of the electricity grid mix in the country studied was found to be an important factor to determine where OPV self-consumption was environmentally beneficial. These findings can support energy policy-makers in their development of energy strategies as well as OPV technology developers, who should adopt a systemic approach and integrate battery storage and the balance of system within their development phases.
Keywords: Organic photovoltaics; Economic analysis; Cost optimisation; Life cycle assessment; LCA; Electricity self-consumption (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919316642
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316642
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113977
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().