Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation
Xiao Wu,
Meihong Wang,
Peizhi Liao,
Jiong Shen and
Yiguo Li
Applied Energy, 2020, vol. 257, issue C
Abstract:
Solvent-based post-combustion CO2 capture (PCC) appears to be the most effective choice to overcome the CO2 emission issue of fossil fuel fired power plants. To make the PCC better suited for power plants, growing interest has been directed to the flexible operation of PCC in the past ten years. The flexible operation requires the PCC system to adapt to the strong flue gas flow rate change and to adjust the carbon capture level rapidly in wide operating range. In-depth study of the dynamic characteristics of the PCC process and developing a suitable control approach are the keys to meet this challenge. This paper provides a critical review for the dynamic research of the solvent–based PCC process including first-principle modelling, data-driven system/process identification and the control design studies, with their main features being listed and discussed. The existent studies have been classified according to the approaches used and their advantages and limitations have been summarized. Potential future research opportunities for the flexible operation of solvent-based PCC are also given in this review.
Keywords: Solvent-based post-combustion CO2 capture; Flexible operation; First principle modelling; System identification; Dynamic control; Review (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919316289
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316289
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113941
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().