Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport
Mingyuan Gao,
Jianli Cong,
Jieling Xiao,
Qing He,
Shoutai Li,
Yuan Wang,
Ye Yao,
Rong Chen and
Ping Wang
Applied Energy, 2020, vol. 257, issue C
Abstract:
Railway freight wagons are unpowered railway vehicles that are used for the transportation of cargoes. However, standard freight wagons are not equipped with electrical conduits (i.e. no external power source) and therefore cannot power monitoring sensors, and those monitoring sensors (pressure sensors and accelerometers) are essential for ensuring driving safety (e.g. derailment monitoring, insufficient brake pressure, and hunting movements). This paper reviews the self-powered sensor nodes for use in rail transport and proposes a technical approach for harnessing vibration energy of freight wagons to power the monitoring sensors. A multi-body rigid-flexible coupled dynamic model of freight rail transport is established to simulate the vibration response (the vibration acceleration and displacement) of freight wagons (car bodies and bogies) and railway tracks (rails and sleepers). The validity of the calculation model is verified by field tests. A new compact electromagnetic vibration energy harvester with an inertial pendulum is developed. Under the inertial oscillations caused by the wheel-rail interaction, the output power is 263 mW. A DC-DC booster circuit with supercapacitors is developed to power the sensor nodes through the harvested vibration energy. The system operates at a startup voltage of 1 V with a conversion efficiency of 40–65%. The energy harvesting system can drive an integral commercial sensor unit (with a pressure sensor and a triaxial MEMS accelerometer) and act as a self-powered sensor node for use in the condition monitoring system of freight rail transport.
Keywords: Energy harvesting; Freight rail transport; Vehicle dynamics; Self-powered sensor nodes; Renewable Energy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919316563
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316563
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113969
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().