EconPapers    
Economics at your fingertips  
 

Machine vision for natural gas methane emissions detection using an infrared camera

Jingfan Wang, Lyne P. Tchapmi, Arvind P. Ravikumar, Mike McGuire, Clay S. Bell, Daniel Zimmerle, Silvio Savarese and Adam R. Brandt

Applied Energy, 2020, vol. 257, issue C

Abstract: In a climate-constrained world, it is crucial to reduce natural gas methane emissions, which can potentially offset the climate benefits of replacing coal with gas. Optical gas imaging (OGI) is a widely-used method to detect methane leaks, but is labor-intensive and cannot provide leak detection results without operators’ judgment. In this paper, we develop a computer vision approach for OGI-based leak detection using convolutional neural networks (CNN) trained on methane leak images to enable automatic detection. First, we collect ∼1 M frames of labeled videos of methane leaks from different leaking equipment, covering a wide range of leak sizes (5.3–2051.6 g CH4/h) and imaging distances (4.6–15.6 m). Second, we examine different background subtraction methods to extract the methane plume in the foreground. Third, we then test three CNN model variants, collectively called GasNet, to detect plumes in videos. We assess the ability of GasNet to perform leak detection by comparing it to a baseline method that uses an optical-flow based change detection algorithm. We explore the sensitivity of results to the CNN structure, with a moderate-complexity variant performing best across distances. The generated detection probability curves show that the detection accuracy (fraction of leak and non-leak images correctly identified by the algorithm) can reach as high as 99%, the overall detection accuracy can exceed 95% across all leak sizes and imaging distances. Binary detection accuracy exceeds 97% for large leaks (∼710 g CH4/h) imaged closely (∼5–7 m). The GasNet-based computer vision approach could be deployed in OGI surveys for automatic vigilance of methane leak detection with high accuracy in the real world.

Keywords: Natural gas; Methane emission; Deep learning; Convolutional neural network; Computer vision; Optical gas imaging (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191931685X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:257:y:2020:i:c:s030626191931685x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.113998

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:257:y:2020:i:c:s030626191931685x