EconPapers    
Economics at your fingertips  
 

Supervisory long-term prediction of state of available power for lithium-ion batteries in electric vehicles

Lin Yang, Yishan Cai, Yixin Yang and Zhongwei Deng

Applied Energy, 2020, vol. 257, issue C

Abstract: The battery state of available power (SOAP) is crucial to improve the energy management of electric vehicles (EVs) and protect batteries from damage. This paper proposes a novel supervisory long-term prediction scheme of SOAP for lithium-ion batteries in electric vehicles. The supervisory long-term prediction denotes that the SOAP is online predicted under the supervision of the EV’s future long-term driving conditions, instead of the traditional approaches under the constant working limitations. Firstly, to accurately capture the battery dynamics, a battery model incorporated with multi-parameters dynamic open circuit voltage is established, and the least square approach with an adaptive forgetting factor is applied to online identify the battery parameters. A new battery state estimation algorithm based on an adaptive two step filter is then proposed to improve the accuracy of the state estimation. A battery’s long-term power demand (LTPD) prediction model is also established for EVs. Based on the improved battery model and predicted battery states, especially under the supervision of the predicted LTPD, the novel supervisory long-term battery SOAP prediction approach is finally put forward to make the prediction practical and accurate. The long-term state of charge (SOC) and SOAP of battery are online co-predicted by the derived algorithms. The robustness of the proposed approach against erroneous initial values, different battery aging levels and ambient temperatures is systematically evaluated by experiments. The experimental results verify the long-term battery SOAP prediction error reduced by 85.9% when compared with that by traditional approaches.

Keywords: Lithium–ion battery; State of available power prediction; Parameter identification; State estimation; Battery management system (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919316939
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316939

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.114006

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919316939