EconPapers    
Economics at your fingertips  
 

Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach

Xiaobo Qu, Yang Yu, Mofan Zhou, Chin-Teng Lin and Xiangyu Wang

Applied Energy, 2020, vol. 257, issue C

Abstract: It has been well recognized that human driver’s limits, heterogeneity, and selfishness substantially compromise the performance of our urban transport systems. In recent years, in order to deal with these deficiencies, our urban transport systems have been transforming with the blossom of key vehicle technology innovations, most notably, connected and automated vehicles. In this paper, we develop a car following model for electric, connected and automated vehicles based on reinforcement learning with the aim to dampen traffic oscillations (stop-and-go traffic waves) caused by human drivers and improve electric energy consumption. Compared to classical modelling approaches, the proposed reinforcement learning based model significantly reduces the modelling constraints and has the capability of self-learning and self-correction. Experiment results demonstrate that the proposed model is able to improve travel efficiency by reducing the negative impact of traffic oscillations, and it can also reduce the average electric energy consumption.

Keywords: Electric vehicles; Connected and automated vehicles; Car following; Machine learning; Reinforcement learning; Deep Deterministic Policy Gradient; Traffic oscillations; Energy consumption (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919317179
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:257:y:2020:i:c:s0306261919317179

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.114030

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:257:y:2020:i:c:s0306261919317179