EconPapers    
Economics at your fingertips  
 

A whole-year simulation study on nonlinear mixed-integer model predictive control for a thermal energy supply system with multi-use components

Adrian Bürger, Markus Bohlayer, Sarah Hoffmann, Angelika Altmann-Dieses, Marco Braun and Moritz Diehl

Applied Energy, 2020, vol. 258, issue C

Abstract: This work presents a whole-year simulation study on nonlinear mixed-integer Model Predictive Control (MPC) for a complex thermal energy supply system which consists of a heat pump, stratified water storages, free cooling facilities, and a large underground thermal storage. For solution of the arising Mixed-Integer Non-Linear Programs (MINLPs) we apply an existing general and optimal-control-suitable decomposition approach. To compensate deviation of forecast inputs from measured disturbances, we introduce a moving horizon estimation step within the MPC strategy. The MPC performance for this study, which consists of more than 50,000 real-time suitable MINLP solutions, is compared to an elaborate conventional control strategy for the system. It is shown that MPC can significantly reduce the yearly energy consumption while providing a similar degree of constraint satisfaction, and autonomously identify previously unknown, beneficial operation modes.

Keywords: Model predictive control; Energy systems; Mixed-integer nonlinear programming (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919317519
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317519

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.114064

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317519