Measures to reduce solar energy dumped in a solar aided power generation plant
Chang Huang,
Hongjuan Hou,
Eric Hu,
Gang Yu,
Si Chen and
Yongping Yang
Applied Energy, 2020, vol. 258, issue C
Abstract:
Solar aided power generation technology has been proved to be one of the most efficient ways to integrate solar energy into a coal-fired power plant. In a typical plant, the solar field size is normally designed with a solar multiple greater than one. Therefore, sometimes collected solar heat becomes surplus when the collected solar heat exceeds the heat demand. Other than being dumped, the surplus solar heat could be either charged into a thermal energy storage system if there is one; or used to preheat (feedwater) continuously. In this paper, the impacts of these two measures (being charged and preheating continuously) on the technical and economic performances of the integrated plant are analyzed in detail by undertaking a desktop case study. The results show that both measures could reduce the surplus solar heat dumped, but the economic performances vary. For the measure of preheating continuously, the maximum solar input is determined by a safety assessment to ensure a stable and safe operation. Surplus heat over this maximum amount has to be dumped. The results also show that for the plant located in Tibet China, both measures could reduce the levelized cost of energy and enhance the effective solar-to-electricity efficiency, compared to dumping case; while continuing preheating measure is superior to being charged technically and economically.
Keywords: Solar heat dumped; Thermal energy storage system; Preheating continuously; Technical and economic performances; Levelized cost of electricity (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919317933
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:258:y:2020:i:c:s0306261919317933
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114106
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().