Evaluation of the humidity performance of a carbon dioxide (CO2) capture device as a novel ventilation strategy in buildings
Moon Keun Kim,
Luca Baldini,
Hansjürg Leibundgut and
Jan Andre Wurzbacher
Applied Energy, 2020, vol. 259, issue C
Abstract:
This study examines the moisture performance of a carbon dioxide (CO2) adsorption device and its utilization as a novel ventilation strategy in buildings. The device adsorbs CO2 and a small amount of moisture in the CO2 capture process. To activate a CO2 capture device for air recirculation in a building or connect it to an air handling unit to minimize the ventilation rate, the air needs to be controlled to have a steady-state humidity ratio below 12 g/kg, which is the maximum humidity ratio allowed in a room according to international standards. This study exhibits the moisture performance of an implemented CO2 capture device in the operation of an air ventilation system and its ability to recirculate indoor air via experimentation and numerical modeling for saving energy in buildings. Moreover, this research also evaluates the humidity performance using the strategy of connecting the CO2 capture device with an air handling unit and recirculating the air in the breathing zone based on an occupancy diversity factor. Based on these results, the study indicates that the air recirculation achieved by either using the CO2 capturing unit itself or connecting it to an air handling unit reduces not only the thermal energy load but also the energy load of dehumidifying the air in buildings. This work newly introduces the humidity performance of a CO2 capture device for air ventilation in buildings, and the novel ventilation paradigm can adjust the supply outdoor airflow rates depending on the surrounding environment and occupant behavior.
Keywords: Novel ventilation; Humidity performance; Buildings; CO2 capture; Occupancy diversity: Energy save (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919304830
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:259:y:2020:i:c:s0306261919304830
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.03.074
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().