Integrated techno-economic modeling, flexibility analysis, and business case assessment of an urban virtual power plant with multi-market co-optimization
Han Wang,
Shariq Riaz and
Pierluigi Mancarella
Applied Energy, 2020, vol. 259, issue C
Abstract:
The concept of Virtual Power Plant (VPP) is recognized as an effective option to aggregate and operate Distributed Energy Resources (DER) to participate in wholesale energy markets and provide flexibility and associated grid services that are needed in a renewable-rich energy system. Also, as most of the DER are available in urban areas, there are increasing interests in assessing the potential to develop urban VPP, for example in university campuses. However, exploiting the flexibility of VPP and developing robust business cases require advanced considerations on their technical and commercial constraints and trade-offs in deploying the VPP’s flexibility when simultaneously participating in multiple markets. In this context, this paper presents a comprehensive, integrated techno-economic modeling approach that assesses the technical and commercial flexibility opportunities and develops a relevant business case framework based on co-optimized participation in multiple markets for an urban VPP. A real-world case study based on the University of Melbourne’s new campus under development is used to demonstrate the proposed approach, including the VPP’s participation in the energy, frequency control ancillary services, demand response, and hedging contract markets. The technical analysis shows that diversity of DER portfolio results in improved participation of VPP in various markets. From an economic perspective, a multi-market co-optimization model such as the one proposed here, fully exploiting the DER’s aggregated flexibility, results in attractive business cases for operating DER in urban areas as a VPP. The proposed approach and examples provided may be seen as a blueprint for more VPP applications and unlocking the great flexibility available in urban areas.
Keywords: Virtual power plant; Multi-market participation; Flexibility; Techno-economic analysis; Co-optimization; Frequency control ancillary services (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (33)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191931829X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:259:y:2020:i:c:s030626191931829x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114142
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().