Development of a high-energy-density portable/mobile hydrogen energy storage system incorporating an electrolyzer, a metal hydride and a fuel cell
Gwangwoo Han,
YongKeun Kwon,
Joong Bae Kim,
Sanghun Lee,
Joongmyeon Bae,
EunAe Cho,
Bong Jae Lee,
Sungbaek Cho and
Jinwoo Park
Applied Energy, 2020, vol. 259, issue C
Abstract:
A hydrogen energy storage system for portable/mobile applications such as personal power sources and unmanned underwater vehicles is developed. An application-oriented design and system integration strategy are newly suggested to maximize energy density while incorporating conventional technologies for the electrolyzer (Ely), the metal hydride (MH), and the polymer electrolyte membrane fuel cell (PEMFC). To improve both the energy density and usability, the systems for charging and discharging are separated. The charging component is composed of a water Ely (0.5 Nm3 h−1) and an MH cooling device as one system. The discharging component consists of an MH (900 NL H2), a PEMFC stack (50 W), and a power conditioning system (PCS) as a single system. The MH material and engineering properties are investigated to find an MH that is suitable for the target system. The hybrid design and operating strategy of the PEMFC and PCS are developed to maximize energy density. The prototype system provides a nominal power output of 31.5 W at 12 V for 38 h with one recharging. We find it significant that the discharging component shows an energy density of 410 Wh L−1, which is twice that of conventional energy storage systems at the 2.9-L level.
Keywords: Metal hydride; PEMFC; Electrolyzer; Hydrogen; Energy density (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919318628
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318628
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114175
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().