Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution
Shiliang Yang,
Tao Zhou,
Yonggang Wei,
Jianhang Hu and
Hua Wang
Applied Energy, 2020, vol. 259, issue C
Abstract:
In-depth understanding of the dynamical and thermal property of bubbles is required to elucidate the phenomena occurring in a bubbling fluidized gasifier. In this work, numerical simulation is conducted for the biomass gasification in a three-dimensional bubbling fluidized bed through the multiphase particle-in-cell method. After validating the numerical results with experimental data, the impact of particle size distribution of sand material on the dynamical property (i.e., the rising velocity, spatial distribution, volume) combined with the thermal property (i.e., gas species, temperature, pressure, density, thermal conductivity) of the rising bubbles in the system are explored. The results demonstrate that large bubbles have a high mass fraction of combustible gases. Along the bed height, the bubble temperature, specific heat and thermal conductivity continuously increase while the density and pressure decrease. Compared with the boundary, the bubble interior has a higher temperature, smaller density, and more combustible gases. Enlarging the particle size distribution width increases the bubble volume, aspect ratio, mass fraction of combustible gas in the lower part of the bed, temperature and the thermal conductivity of bubbles, but decreases the rising velocity, density and pressure of the rising bubbles. The results obtained provide a new perspective regarding the effect of particle size distribution on the bubble property especially the first report regarding the thermal property of the rising bubbles in the bubbling fluidized gasifier, which will be beneficial for the in-depth understanding for the fundamental aspects and also the practical operation for this kind of apparatus.
Keywords: Bubbling fluidized bed gasifier; Biomass gasification; Particle size distribution; Bubble dynamics; Multiphase particle-in-cell (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919318653
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318653
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114178
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().