Towards uniform distributions of reactants via the aligned electrode design for vanadium redox flow batteries
J. Sun,
H.R. Jiang,
B.W. Zhang,
C.Y.H. Chao and
T.S. Zhao
Applied Energy, 2020, vol. 259, issue C
Abstract:
Enhancing the hydraulic permeability of electrodes along both the through-plane and in-plane directions is essential in flow-field structured vanadium redox flow batteries, as it can promote uniform distributions of reactants, lower the concentration overpotential, and therefore improve battery performances. In this work, uniaxially-aligned carbon fiber electrodes with the fiber diameter ranging from 7 to 12 µm (average ~10 µm) are fabricated by electrospinning method. Attributed to the enhanced permeability of the aligned structure, the battery assembled with the prepared electrodes exhibits an energy efficiency of 84.4% at a current density of 100 mA cm−2, which is 13.2% higher than that with conventional electrospun fiber electrodes. The permeability in the in-plane direction is further tailored by adjusting the orientation of aligned fibers against the flow channels. Results show that when the orientation of aligned fibers is perpendicular to the direction of flow channels, the battery delivers the largest discharge capacity and the highest limiting current density (~900 mA cm−2). Such an enhancement in the battery performance can be ascribed to the more uniform in-plane distribution of reactants and current by maximizing the permeability along the direction vertical to the flow channels, as evidenced by a three-dimensional model.
Keywords: Aligned fiber; Uniform distribution; Concentration polarization; Electrospinning; Vanadium redox flow battery (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919318859
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318859
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114198
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().