A novel spontaneous self-adjusting controller of energy storage system for maximum demand reductions under penetration of photovoltaic system
Lee Cheun Hau,
Yun Seng Lim and
Serena Miao San Liew
Applied Energy, 2020, vol. 260, issue C, No S0306261919319816
Abstract:
Customers are subject to varying charges for their electricity consumption (kWh) as well as monthly maximum demands (kW) depending on the charging schemes for commercial and industrial customers. Generally, maximum demand charges may account for as high as 30% of the total electricity bills. Although on-site photovoltaic (PV) systems can help customers reduce their maximum demand charges, PV may not be as effective in reducing some of the peak demands due to the intermittent power output of PV. The inclusion of a battery-based energy storage system (BESS), on the other hand, can reduce those unexpected peaks by supplying power at the appropriate time and magnitude. Research efforts have therefore been carried out to develop control strategies for BESS to reduce the peak demands of PV customers. However, some of the existing controllers that rely on forecasted next-interval net demands to supply power for the next interval may fail to reduce peak demands effectively when the actual next-interval net demands are different from the forecasted ones. Hence, a spontaneous self-adjusting controller has been developed and presented in this paper to overcome this issue. It employs model predictive control and dynamic programming with anticipatory, preparatory and recovery actions to achieve a maximum demand reduction of at least 11.00% over the monthly maximum demand. Throughout an experimental peak reduction period of 4 months, the controller has also proven to achieve a reduction of at least 74.11% of the ideal reductions as compared to 68.00% and 65.00% reductions demonstrated by the preceding active and fuzzy controllers.
Keywords: Peak demand reductions; Maximum demand reductions; Battery energy storage; Photovoltaic; Spontaneous self-adjusting; Model predictive control (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919319816
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319816
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114294
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().