Stabilizing and enhancing permeability for sustainable and profitable energy extraction from superhot geothermal environments
Noriaki Watanabe,
Kohei Saito,
Atsushi Okamoto,
Kengo Nakamura,
Takuya Ishibashi,
Hanae Saishu,
Takeshi Komai and
Noriyoshi Tsuchiya
Applied Energy, 2020, vol. 260, issue C, No S0306261919319932
Abstract:
Superhot geothermal environments in granitic crusts of ca. 400–500 °C and depths of 2–4 km are recognized as a frontier of geothermal energy. In developing such environments, hydraulic fracturing is a promising way to create or recreate permeable fracture networks to effectively access the energy through enhanced geothermal systems (EGS). However, there is a concern about the possibility of stabilizing or enhancing the permeability created by hydraulic fracturing, required for sustainable and profitable energy production, because pressure solution of the fracture surfaces may reduce permeability. On the other hand, permeability may be enhanced by free-face dissolution of the fracture surfaces even if pressure solution occurs. However, the rates of permeability reduction and enhancement are not fully understood, and the possibility of stabilizing/enhancing permeability is therefore unclear. We have conducted hydrothermal flow-through experiments on 400 °C fractured granite samples to clarify the influences of stress level and plasticity of the fracture on the rate of permeability reduction by pressure solution and the influences of pore water pressure and corresponding mineral solubility on the rate of permeability enhancement by free-face dissolution. Results suggest that permeability may be either stabilized or enhanced in superhot EGS even when pressure solution can occur by keeping the difference between the concentration of the pore water and the solubility of quartz higher than the stress-dependent permeability stabilization criterion.
Keywords: Permeability; Fracture; Pressure solution; Free-face dissolution; Supercritical water; Enhanced geothermal system (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919319932
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:260:y:2020:i:c:s0306261919319932
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114306
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().