A distributed Peer-to-Peer energy transaction method for diversified prosumers in Urban Community Microgrid System
Zibo Wang,
Xiaodan Yu,
Yunfei Mu and
Hongjie Jia
Applied Energy, 2020, vol. 260, issue C, No S0306261919320148
Abstract:
As massive integration of Distributed Energy Resources (DERs), the role of end-users in the Urban Community Microgrid System (UCMS) has transformed from traditional consumers into prosumers with capabilities of both energy production and consumption. The exchange of energy between autonomous microgrid prosumers can be achieved with the introduction of Peer-to-Peer (P2P) energy transaction, promoting the efficient allocation of energy in the UCMS. However, the existing centralized P2P energy transaction approaches require microgrid transaction brokers to obtain prosumers’ private data, including energy resource configuration, operation status, and energy production/consumption schedule. With the enhancement of prosumers’ awareness of privacy protection, it will be increasingly more difficult for the brokers to obtain such private data in practical application scenarios, resulting in obstacles on the implementation of such centralized approach. Thus, a novel distributed P2P energy transaction method based on the double auction market is proposed in this paper. Prosumers first generate the information of energy supply and demand autonomously utilizing distributed energy management model, then set the price targeting profit maximization, and finally initiate P2P energy transaction mutually in the double auction energy market. Compared with the existing centralized approaches, the method proposed in this paper can achieve the coordination and complementarity of energy in the UCMS, promoting economic benefit, energy self-sufficiency, and renewable energy self-consumption without sacrificing privacy preservation and robustness.
Keywords: Urban Community Microgrid System; Distributed Peer-to-Peer (P2P) energy transaction; Autonomous energy management; Autonomous pricing; Supply-demand coordination (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919320148
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:260:y:2020:i:c:s0306261919320148
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114327
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().