EconPapers    
Economics at your fingertips  
 

Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model

Arpit Maheshwari, Nikolaos G. Paterakis, Massimo Santarelli and Madeleine Gibescu

Applied Energy, 2020, vol. 261, issue C, No S0306261919320471

Abstract: Given their technological and market maturity, lithium-ion batteries are increasingly being considered and used in grid applications to provide a host of services such as frequency regulation, peak shaving, etc. Charging and discharging these batteries causes degradation in their performance. Lack of data on degradation processes combined with requirement of fast computation have led to over-simplified models of battery degradation. In this work, the recent experimental evidence that demonstrates that degradation in lithium-ion batteries is non-linearly dependent on the operating conditions is incorporated. Experimental aging data of a commercial battery have been used to develop a scheduling model applicable to the time constraints of a market model. A decomposition technique that enables the developed model to give near-optimal results for longer time horizons is also proposed.

Keywords: Lithium-ion batteries; Energy markets; Degradation; Cycle aging; Optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919320471
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320471

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.114360

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320471