Stochastic effects of ice storage on improvement of an energy hub optimal operation including demand response and renewable energies
A. Heidari,
S.S. Mortazavi and
R.C. Bansal
Applied Energy, 2020, vol. 261, issue C, No S030626191932080X
Abstract:
The energy hub as a new concept has attracted much attention in modern power systems. One of the aspects of an energy hub deals with its optimal operation. Energy hub scheduling for a day-ahead time horizon including demand response program, different kinds of energy storage, and renewable energy resources, are focused on this current study. In particular, the effects of ice storage, as a novel and developing storage device and yet researchable subject, on the performance and efficiency of the energy hub operation cost are investigated. The stochastic behavior of ice storage is also considered to be compared with deterministic conditions. The studied energy hub is composed of energy converters, including combined cooling, heating, and power (CCHP), to deliver energy to its electrical, heating, and cooling loads. It uses clean, green and, renewable energies as wind turbines and solar panels. The method applied is that the studied energy hub minimizes its operation costs while satisfying demand response constraints in an uncertain environment. The proposed methodology has been evaluated in comparative case studies, and the obtained results show the requirement of including uncertain mode of ice storage in the energy hub.
Keywords: Demand response; Energy hub; Ice storage; Renewable energies; Stochastic programming (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626191932080X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:261:y:2020:i:c:s030626191932080x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114393
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().