Reducing carbon footprint of deep-sea oil and gas field exploitation by optimization for Floating Production Storage and Offloading
Zhuochao Li,
Haoran Zhang,
Jing Meng (),
Yin Long,
Yamin Yan,
Meixuan Li,
Zhongliang Huang and
Yongtu Liang
Applied Energy, 2020, vol. 261, issue C, No S0306261919320859
Abstract:
Deep-sea oil and gas fields are acting as a vital role by providing substantial oil and gas resource, and Floating Production Storage and Offloading is an indispensable tool for the development of offshore oil and gas fields effectively. Here, Life Cycle Assessment is applied to evaluate environmental loads in the whole life cycle of the deep-sea oil and gas production. This paper explores the carbon footprint of Floating Production Storage and Offloading as the time axis. It is found that Floating Production Storage and Offloading is a conceptual product at the design stage and does not generate carbon emission, while the operational stage releases considerable emission by the fuel combustion process, accounting for 88.2% of the entire life cycle. To decrease this part of carbon emission, distributed energy system is considered as a promising choice because it integrates different energy resources and provides an economic and environmental energy allocation scheme to meet the energy demand. For the operation stage, this paper establishes a Multi-objective Mathematical Programming model to determine the selection and capacity of facilities with minimum annual total cost and carbon emissions by considering the energy balance and technical constraints. The model is validated by an example and solved by the weight method. According to designer's demand, distributed energy system can optimize economic objectives in a maximum range of 14.6%, and a maximum emission reduction of 4.53% can be expected compared with the traditional scheme. Sensitivity analysis shows that cost is more sensitive to natural gas price.
Keywords: Carbon footprint; Distributed energy system; Life cycle assessment; Multi-objective mathematical programming; Floating Production Storage and Offloading (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919320859
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320859
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114398
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().