EconPapers    
Economics at your fingertips  
 

Two-stage robust optimization for expansion planning of active distribution systems coupled with urban transportation networks

Shiwei Xie, Zhijian Hu and Jueying Wang

Applied Energy, 2020, vol. 261, issue C, No S0306261919320999

Abstract: Widespread utilization of electric vehicles has incurred more uncertainties and led to profound interdependencies across the power grid and transportation network. This creates an urgent demand for uncertainty modelling tools. Under this context, this paper proposes a two-stage robust optimization model for expansion planning of coupled active distribution and transportation. This model identifies the best type, location and capacity for roads, distribution lines, distributed generations, static VAR compensators, on-load tap changers, energy storage systems and charging facilities. From a system-level perspective, the steady-state pattern of the traffic flow in a transportation network is characterized by the Wardrop user equilibrium. In the active distribution system, the conic relaxation-based branch flow equations are employed, and the operating status of related devices are formulated by the linearized convex constraints. Considering the interdependency between two coupled systems, a deterministic expansion planning model is first established. Furthermore, with multiple uncertainties considered, a two-stage robust optimization model is proposed to optimize the investment and operation strategies coordinately, and thus a robust optimal solution is achieved. A two-level algorithm based on a combination of the column-and-constraint generation and outer approximation technique is developed for solving the two-stage model. The results demonstrate that the robust approach can effectively reduce the operation cost of coupled systems under the worst-case scenarios. Moreover, a comparative analysis indicates that operation costs in both systems increase linearly as the uncertainty level of traffic demand increases, while increasing that of the power load does not show an obvious change in the traffic operation cost.

Keywords: Active distribution system; Transportation network; Two-stage robust optimization; Uncertain renewable energies; Electric vehicle (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919320999
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320999

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.114412

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320999