Stochastic dispatch of energy storage in microgrids: An augmented reinforcement learning approach
Yuwei Shang,
Wenchuan Wu,
Jianbo Guo,
Zhao Ma,
Wanxing Sheng,
Zhe Lv and
Chenran Fu
Applied Energy, 2020, vol. 261, issue C, No S0306261919321105
Abstract:
The dynamic dispatch (DD) of battery energy storage systems (BESSs) in microgrids integrated with volatile energy resources is essentially a multiperiod stochastic optimization problem (MSOP). Because the life span of a BESS is significantly affected by its charging and discharging behaviors, its lifecycle degradation costs should be incorporated into the DD model of BESSs, which makes it non-convex. In general, this MSOP is intractable. To solve this problem, we propose a reinforcement learning (RL) solution augmented with Monte-Carlo tree search (MCTS) and domain knowledge expressed as dispatching rules. In this solution, the Q-learning with function approximation is employed as the basic learning architecture that allows multistep bootstrapping and continuous policy learning. To improve the computation efficiency of randomized multistep simulations, we employed the MCTS to estimate the expected maximum action values. Moreover, we embedded a few dispatching rules in RL as probabilistic logics to reduce infeasible action explorations, which can improve the quality of the data-driven solution. Numerical test results show the proposed algorithm outperforms other baseline RL algorithms in all cases tested.
Keywords: Microgrid; Energy storage; Volatile energy resource; Dynamic dispatch; Reinforcement learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919321105
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:261:y:2020:i:c:s0306261919321105
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114423
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().