Thermochromic materials for indoor thermal comfort improvement: Finite difference modeling and validation in a real case-study building
C. Fabiani,
V.L. Castaldo and
A.L. Pisello
Applied Energy, 2020, vol. 262, issue C, No S0306261919318343
Abstract:
In recent years, a huge research effort aimed at developing adaptive materials for improving building indoor thermal comfort has been detected. Yet, only a few analytic and dynamic approaches have been implemented to predict building materials thermal performance. In this study, an analytic model is elaborated to evaluate the thermal performance of a well insulated case study prototype building equipped with a thermochromic envelope, and bench-mark it against cool-only and dark-only applications. Therefore, the effect of the selected thermochromic solutions on the indoor environment of the building in terms of surface and indoor air temperature is evaluated both in summer and winter conditions. Results show that the application of the thermochromic membrane and wall paint represents a win-to-win solution combining the well-established passive cooling effect of high reflectance materials in summer with desirable solar gains produced by dark surfaces in winter. Average indoor air temperature reductions up to 0.2 and 0.5 K were found in summer, while a 0.5 and 0.6 K increase was registered in winter, for the low and high insulation configuration, respectively, when compared to more common dark and cool solution.
Keywords: Heat balance; Energy efficiency in buildings; Thermochromic materials; Adaptive material properties; Indoor thermal comfort; Albedo (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919318343
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:262:y:2020:i:c:s0306261919318343
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114147
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().