EconPapers    
Economics at your fingertips  
 

Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities

Yuekuan Zhou and Siqian Zheng

Applied Energy, 2020, vol. 262, issue C, No S0306261919321038

Abstract: The accurate demand prediction with high efficiency and advanced demand-side controller are essential for the enhancement of energy flexibility provided by buildings, whereas the current literature fails to present the mechanism on modelling development and demand-side control. This paper aims to deal with the complexity of building demand prediction with supervised machine learning method, including the multiple linear regression, the support vector regression and the backpropagation neural network. The regularization, adding the sum of the weights to the learning function, is utilized to improve the training speed and to solve the overfitting by eliminating the unnecessary connections with small weights. The configuration of the artificial neural network was presented, and sensitivity analysis has been conducted on the learning performance regarding different training times. Energy flexibilities of sophisticated building energy systems (including renewable system, electric and thermal demands and building services systems) were quantitatively characterised with a series of quantifiable indicators. Moreover, several advanced controllers have been developed and contrasted, in regard to the flexibility utilisation of building energy systems. Results showed that, the developed hybrid controller with short-term prediction through the cross-entropy function is more technically competitive than other controllers. With the implementation of the developed hybrid controller, the peak power of the grid importation can be reduced from 500.3 to 195 kW by 61%. This study formulates a data-driven model with an advanced machine learning algorithm for the accurate building demand prediction and a hybrid advanced controller with short-term prediction for the energy management, which are critical for the promotion of energy flexible buildings.

Keywords: Machine learning; Energy demand prediction; Energy flexible building; Renewable energy; Demand side management; Hybrid energy storages (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919321038
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:262:y:2020:i:c:s0306261919321038

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2019.114416

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261919321038