Robust chance-constrained programming approach for the planning of fast-charging stations in electrified transportation networks
Bo Zhou,
Guo Chen,
Qiankun Song and
Zhao Yang Dong
Applied Energy, 2020, vol. 262, issue C, No S0306261919321683
Abstract:
In this paper, a bi-level programming model is established to address the planning issues of fast-charging stations in electrified transportation networks with the consideration of uncertain charging demands. The capacitated flow refueling location model is considered in the upper level to minimize the planning cost of fast-charging stations while the traffic assignment model is utilized in the lower level to determine the spatial and temporal distribution of plug-in electric vehicle flows over entire transportation networks. Such bi-level model unveils the inherent relationship among charging demands, electrical demands and the spatial and temporal distribution of plug-in electric vehicle flows. Robust chance constraints are formulated to characterize the service abilities of fast-charging stations under distribution-free uncertain charging demands, where the ambiguity set is constructed to estimate the potential values of the uncertainties based on their moment-based information, such that the robust chance constraints can exactly be reduced to mixed integer linear constraints. By introducing new variables, the bi-level model is then reformulated into a single-level mixed integer second-order cone programming model so as to be solved via off-the-shelf solvers, which guarantee the optimality of the solution. A case study is conducted to illustrate the effectiveness of the proposed planning model, which reveals three critical factors that significantly impact the planning outcomes.
Keywords: Plug-in electric vehicle; Fast-charging station; Transportation network; Distribution network; Robust chance constraint; Mixed integer second order cone programming (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919321683
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:262:y:2020:i:c:s0306261919321683
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.114480
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().