Development of a framework for sequential Bayesian design of experiments: Application to a pilot-scale solvent-based CO2 capture process
Joshua C. Morgan,
Anderson Soares Chinen,
Christine Anderson-Cook,
Charles Tong,
John Carroll,
Chiranjib Saha,
Benjamin Omell,
Debangsu Bhattacharyya,
Michael Matuszewski,
K. Sham Bhat and
David C. Miller
Applied Energy, 2020, vol. 262, issue C, No S0306261920300453
Abstract:
In this paper, a methodology is developed for sequential design of experiments (SDoE) for process systems and applied to a solvent-based CO2 capture system. In this approach, the prior knowledge of the system is used to prioritize process data collection at specific operating conditions. These data are then incorporated into a Bayesian inference methodology for updating a stochastic model by refining estimations of its underlying parameters, and the updated model is then used to generate the next set of test runs. Thus, the new knowledge obtained from the data is used to guide subsequent iterations of the experimental runs, ensuring that the overall data collection is maximally informative given that most experimental campaigns, especially at pilot or higher-scale plants, are costly, time-consuming, and resource-limited. The test run objective for this work was to minimize the maximum model prediction uncertainty for key output variables, but the methodology is generic and can be readily applied to other test run objectives. This methodology is applied to an aqueous monoethanolamine (MEA) pilot plant campaign at the National Carbon Capture Center (NCCC) in Wilsonville, Alabama, USA. The SDoE framework was utilized for two iterations, while collecting 18 sets of data representing different process conditions, and this resulted in an overall average reduction in uncertainty of approximately 50% in the prediction of CO2 capture percentage. Moreover, 11 additional data sets were obtained with variation of absorber packing height for further model validation. This work shows the capability of the SDoE framework to maximize learning given limited resources, allowing for the reduction of model uncertainty, which is of great importance for many applications including reduction of technical risk associated with scale-up and economic analysis.
Keywords: Design of experiment; Bayesian; Sequential; Pilot plant; CO2 capture; MEA (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920300453
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300453
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114533
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().