EconPapers    
Economics at your fingertips  
 

Supercritical water gasification of Kraft black liquor: Process design, analysis, pulp mill integration and economic evaluation

Mohamed Magdeldin and Mika Järvinen

Applied Energy, 2020, vol. 262, issue C, No S0306261920300702

Abstract: Supercritical water is a practical processing medium for the treatment of weak black liquor (WBL) produced from pulp digesters in Kraft mill operations. WBL is characterized as a bio-feed with considerable thermal potential, but also a challenging high water content (~82 wt.%) and high inorganic to organic ratio for thermochemical conversion. The advantageous thermo-physical properties of water near to and beyond the critical point allow for the valorization of the organic content into a product gas, while enabling the efficient recycle of the inorganic pulping chemicals. Detailed process models were developed on Aspen Plus® and commercial spreadsheet software to examine the impact of an integrated Sub/supercritical water (SCW) reactor system on the mill material and energy flows. When considering the three energy co-products: gas, solids and hot water: the stand-alone SCW reactor system had a system efficiency of 83% and 80% for a 450 °C and 600 °C operating reactor temperature, respectively. The inorganic fraction of the solid SCW co-product and the aqueous by-product provide a synergetic effect as drop-in material streams within the chemicals recovery cycle. By re-directing the WBL to the SCW reactor system, pulp production capacity could be increased by 75%, while matching mill energy requirements and, with minimum disruptions to the mill chemistry. Under the economic assumptions of this study, a 30–50% WBL split fraction to the SCW reactor system improves the minimum selling price of the pulp product compared to a reference Nordic softwood mill with 800 k air-dried ton pulp capacity per year.

Keywords: Supercritical water gasification; Black liquor; Mixed solvent electrolyte model; Techno-economic assessment; Biorefinery; Pulp mill integration (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920300702
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300702

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.114558

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300702