EconPapers    
Economics at your fingertips  
 

Dark fermentative hydrogen production using macroalgae (Ulva sp.) as the renewable feedstock

Winny Margareta, Dillirani Nagarajan, Jo-Shu Chang and Duu-Jong Lee

Applied Energy, 2020, vol. 262, issue C, No S0306261920300866

Abstract: Macroalgae, commonly known as seaweed, are rich in carbohydrates which makes them a potential feedstock for biohydrogen production via dark fermentation. In this study, the green macroalgal biomass Ulva sp. was subjected to mild acid-thermal combined pretreatment for the effective release of fermentable sugars. Among the H2SO4 acid concentrations tested, 4% H2SO4 and 121 °C for 40 min attained the highest hydrolysis efficiency with a reducing sugar yield of 0.21 g RS/g biomass. The concentration of fermentation inhibitors furfural and 5-hydroxymethyl furfural were below 1 g/L. Using an initial reducing sugar concentration of 12 g/L and pH 5.5, Clostridium butyricum CGS5 achieved the highest cumulative hydrogen production (2340 mL/L), maximum hydrogen productivity (208.3 mL/L/h), and hydrogen yield (1.53 mol H2/mole RS). In continuous fermentation with 6 h hydraulic retention time, maximum hydrogen productivity increased to 782.45 mL/L/h with a hydrogen yield of 1.52 mol H2/mol hexose. To the best of our knowledge, we report for the first time, biohydrogen production via dark fermentation from green macroalgal biomass Ulva sp. with better yield and productivity.

Keywords: Biohydrogen; Macroalgae; Ulva sp.; Dark fermentation; Clostridium sp. (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920300866
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300866

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.114574

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300866