From removal to recovery: An evaluation of nitrogen recovery techniques from wastewater
Aubrey Beckinghausen,
Monica Odlare,
Eva Thorin and
Sebastian Schwede
Applied Energy, 2020, vol. 263, issue C, No S0306261920301288
Abstract:
Nitrogen recovery is the next step in the improvement of the wastewater treatment process, utilizing this important nutrient for fertilizers to decrease use of energy, petrochemicals, and impact on the environment. The majority of wastewater treatment plants currently employ methods to remove nitrogen which are energy intensive and have no additional benefits besides complying with effluent concentration limits. Instead, recovering nitrogen allows simultaneous treatment of wastewater while collecting a concentrated ammonia product, creating a circular economy solution. This review acts to compile current research regarding nitrogen recovery and compare different techniques' recovery efficiencies and energy requirements. One outcome of this review is that more than one third of the techniques reviewed had little comments around the energy question, and thus more research needs to take place as these recovery systems continue to evolve towards full scale implementation. Additionally, a basic economic analysis was completed to demonstrate potential investment opportunities to implement these technologies. From this investigation, gas permeable membrane technology has the potential to recover ammonia from wastewater using little energy and may provide a small income with the sale of the product. Other techniques such as vacuum membrane distillation with acid absorption need further validation to determine the energy costs, as the amount of heat recycling has a great impact on the overall energy and economic balances. Finally, a discussion of the misalignment of products from recovery techniques and fertilizers in use today highlights the lack of communication and information sharing between the research community and the end users.
Keywords: Ammonia recovery; Circular economy; Energy requirements; Haber Bosch; Nitrogen recovery; Nutrient recovery (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920301288
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:263:y:2020:i:c:s0306261920301288
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114616
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().