Self-adapting J-type air-based battery thermal management system via model predictive control
Yuanzhi Liu and
Jie Zhang
Applied Energy, 2020, vol. 263, issue C, No S0306261920301525
Abstract:
Battery thermal control plays an indispensable role in terms of the safety and performance for electric vehicles. For air-based cooling technologies, one of the most pressing challenges is to balance the temperature uniformity and constrain the maximum temperature simultaneously under varying driving conditions. This paper proposes a self-adaptive intelligent neural network-based model predictive control strategy for a J-type air-based battery thermal management system. The J-type structure is first optimized through surrogate-based optimization to improve the temperature uniformity before control. Based on the optimized J-type configuration, an operation mode switching module is developed to mitigate the temperature unbalance. The thermal control approach is tested using an integrated driving cycle, and its evaluations are threefold: (i) the neural network-based control without mode switching fails to meet the thermal requirements; (ii) the control with mode switching succeeds in constraining the maximum temperature and maintaining the temperature uniformity within 1.33 K; (iii) the added model predictive control approach slightly enhances the thermal performance but improves the energy efficiency significantly by 15.8%. The results show that the J-type structure with its appropriate control strategy is a promising solution for light-duty electric vehicles using an air-cooling technology.
Keywords: Battery thermal management system; Surrogate-based optimization; J-type structure; Model predictive control; Electric vehicles (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920301525
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:263:y:2020:i:c:s0306261920301525
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114640
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().