EconPapers    
Economics at your fingertips  
 

Tunable, multi-modal, and multi-directional vibration energy harvester based on three-dimensional architected metastructures

Rujie Sun, Qinyu Li, Jianfei Yao, Fabrizio Scarpa and Jonathan Rossiter

Applied Energy, 2020, vol. 264, issue C, No S0306261920301276

Abstract: Conventional vibration energy harvesters based on two-dimensional planar layouts have limited harvesting capacities due to narrow frequency bandwidth and because their vibratory motion is mainly restricted to one plane. Three-dimensional architected structures and advanced materials with multifunctional properties are being developed in a broad range of technological fields. Structural topologies exploiting compressive buckling deformation mechanisms however provide a versatile route to transform planar structures into sophisticated three-dimensional architectures and functional devices. Designed geometries and Kirigami cut patterns defined on planar precursors contribute to the controlled formation of diverse three-dimensional forms. In this work, we propose an energy harvesting system with tunable dynamic properties, where piezoelectric materials are integrated and strategically designed into three-dimensional compliant architected metastructures. This concept enables energy scavenging from vibrations not only in multiple directions but also across a broad frequency bandwidth, thus increasing the energy harvesting efficiency. The proposed system comprises a buckled ribbon with optional Kirigami cuts. This platform enables the induction of vibration modes across a wide range of resonance frequencies and in arbitrary directions, mechanically coupling with four cantilever piezoelectric beams to capture vibrations. The multi-modal and multi-directional harvesting performance of the proposed configurations has been demonstrated in comparison with planar systems. The results suggest this is a facile strategy for the realization of compliant and high-performance energy harvesting and advanced electronics systems based on mechanically assembled platforms.

Keywords: Energy harvesting; Kirigami; Multi-modal; Multi-directional; Vibration (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920301276
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:264:y:2020:i:c:s0306261920301276

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.114615

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920301276