Analysis of degradation in residential battery energy storage systems for rate-based use-cases
Partha Pratim Mishra,
Aadil Latif,
Michael Emmanuel,
Ying Shi,
Killian McKenna,
Kandler Smith and
Adarsh Nagarajan
Applied Energy, 2020, vol. 264, issue C, No S0306261920301446
Abstract:
This article examines the impact of residential battery energy storage (BES) systems’ operational modes on the life (i.e. usable energy capacity) of the battery under several climatic conditions and battery chemistries. The sharp increase in residential BES installations has been a result of decreasing costs of batteries, increase in rate structures motivated applications such as solar self-consumption and time-of-use energy management, and customers purchasing these systems for backup power. While these different modes of operations provide a combination of increased bill savings, reliability of supply, and energy sustainability to the customer, their operational characteristics vary significantly between use-cases. Functional life of BES systems is known to be strongly dependent on their operating conditions. In this article, we analyze the operation of residential BES systems under different rate-based use-cases, for different battery chemistries and cell designs, and under different environmental conditions. This is conducted by simulating the control of BES operations using rate-based cycling algorithms and analyzing the prognosis of multiple battery lifetime models that consider complex nonlinear dependencies of operational stress factors such as state-of-charge, depth-of-discharge, and temperature on degradation. Significant variations in battery life are observed owing to the differences in characteristics of the uses-cases coupled with environmental conditions and battery chemistries. Such differences lead to the conclusion that choice of residential BES technologies and chemistries should account for their intended use-cases.
Keywords: Residential battery energy storage; Rate-based control algorithm; Battery life; Behind-the-meter application; Lithium-ion battery; Photovoltaic solar energy (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920301446
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:264:y:2020:i:c:s0306261920301446
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114632
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().