A high-thermal-conductivity, high-durability phase-change composite using a carbon fibre sheet as a supporting matrix
Kaixin Dong,
Nan Sheng,
Deqiu Zou,
Cheng Wang,
Kenji Shimono,
Tomohiro Akiyama and
Takahiro Nomura
Applied Energy, 2020, vol. 264, issue C, No S0306261920301975
Abstract:
The practical application of low-temperature latent heat storage systems is limited by the low thermal conductivity of the phase-change material (PCM). We fabricated a phase-change composite (PCC) with high thermal conductivity (k) and a high thermal-conductivity-retention rate (k/k0) during thermal cycles to solve this problem. A new type of high-thermal-conductivity carbon fibre sheet (CFS) material was used to enhance the thermal conductivity of erythritol PCM. CFSs were stacked and compressed to form a 3D network structure of high thermal conductivity carbon fibre, then the porous structure was impregnated with liquid erythritol PCM in a vacuum. The thermal conductivity of the PCC was measured by using the laser flash method, and the microstructures were analysed by energy dispersive spectroscopy using a scanning electron microscope. Durability tests of 5 and 100 cycles, using differently shaped PCC samples, were conducted to investigate the thermal conductivity of the PCC. With the addition of 14.8 vol% CFS, the thermal conductivity of the PCC was improved to 24.4 W·m−1·K−1 (32.4 times higher than that of a pure PCM), and the thermal conductivity retention rate after 100 thermal cycles reached 89.4%. High-thermal-conductivity carbon fibre network structures with high connectivity were established in the PCC before the durability test and after 100 thermal cycles. The fabricated PCC exhibited a high thermal conductivity with less enhancement material and prolonged durability.
Keywords: Thermal energy storage; Latent heat storage; PCM; Thermal conductivity; Composite (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920301975
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:264:y:2020:i:c:s0306261920301975
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114685
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().