EconPapers    
Economics at your fingertips  
 

Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide

Dongin Kim and Jeehoon Han

Applied Energy, 2020, vol. 264, issue C, No S0306261920302233

Abstract: Carbon utilization (CU) based formic acid (FA) process is a promising option to reduce carbon dioxide (CO2) causing global warming but energy intensive resulting in a negative income effect on energy consumption. In the literature, catalytic conversion of CO2 to FA at low concentrations is focused and limited to recovery of FA with a high purity. This study presents two commercial-scale processes for catalytic production of formic acid (FA) from CO2, and conducts economic, energy and environmental analysis of them. Process B that uses an Au/TiO2 catalyst has a higher conversion by 3 mol% to 84 mol% than Process A that uses a Ru-Ph catalyst. Moreover, after catalytic conversion of CO2, Process B uses an additional amine shift reaction to recover FA with low energy consumption. Simulation of process design including CO2 conversion and separation of FA shows that Process B has a higher energy efficiency by 24.3% to 69.0% compared to Process A. However, Process A has a much lower reaction time (TR) than Process B, so the minimum selling price of FA (US$ 1,029/tFA) for Process A is more cost-competitive than Process B (US$ 1,037/tFA) with the current petroleum-based approach. In contrast, environmental analyses show that Process B has a higher potential by 0.3 tCO2/tFA to reduce CO2 emissions. If feasible positive assumptions (reduced TR; received carbon credits) can be met, Process B will also be techno-economically viable.

Keywords: Carbon utilization process; Energy analysis; Economic analysis; Environmental analysis (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920302233
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302233

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.114711

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302233