EconPapers    
Economics at your fingertips  
 

Projecting cost development for future large-scale power-to-gas implementations by scaling effects

Hans Böhm, Andreas Zauner, Daniel C. Rosenfeld and Robert Tichler

Applied Energy, 2020, vol. 264, issue C, No S0306261920302920

Abstract: Power-to-gas (PtG) is widely expected to play a valuable role in future renewable energy systems. In addition to partly allowing a further utilization of the existing gas infrastructure for energy transport and storage, hydrogen or synthetic natural gas (SNG) from electric power represents a high-density energy carrier and important feedstock material for further processing. This premise leads to a significant demand for large-scale PtG plants, which was evaluated with an amount of up to 4530 GWel for electrolysis and up to 1360 GWSNG for methanation capacities at a global scale. Together with the upscaling of single-MW plants available today, this will enable to achieve appropriate cost reduction effects through technological learning. Under given scenarios, reduction potentials for CAPEX of >75% are expected for multi-MW PtG plants in the long-term, with significant advantages of PEM and solid oxide electrolysis over alkaline systems in the short- and mid-term. The resulting effects on PtG product costs were evaluated via a holistic techno-economic assessment, resulting in SNG production costs of 15 €-cent/kWh and below for large-scale appliances in 2050, depending on the renewable electricity supply.

Keywords: Power-to-gas; Electrolysis; Methanation; Scaling effects; Technological learning (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920302920
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302920

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2020.114780

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920302920