Performance evaluation of metal-foam baffle exhaust heat exchanger for waste heat recovery
Tianyu Chen,
Gequn Shu,
Hua Tian,
Tingting Zhao,
Hongfei Zhang and
Zhao Zhang
Applied Energy, 2020, vol. 266, issue C, No S0306261920303871
Abstract:
In this study, a novel metal-foam baffle cut shell and tube heat exchanger for waste heat recovery system is presented to recover heat in the exhaust gas. A 3D numerical model is established to investigate the thermal-hydraulic performance of the metal-foam baffle heat exchangers. First, the non-baffle shell and tube heat exchangers and traditional metal baffle shell and tube heat exchangers are simulated as reference for comparison. Then, the velocity distribution, temperature distribution and pressure distribution of three different types of heat exchangers are analyzed. Afterwards, the influences of exhaust gas mass flow rate and baffle thickness on pressure drop and heat transfer performance of metal-foam baffle heat exchangers and traditional ones are evaluated. The results show that, compared with traditional metal baffle heat exchangers, all metal-foam baffle exchangers show better comprehensive performance, and the area goodness factor of metal-foam baffle heat exchangers increases by 151.89%−583.62%. Among the given heat exchangers, the metal-foam baffle heat exchanger with selected metal-foam sample (MF 40.9132) is the optimum one for waste heat recovery.
Keywords: Metal foam; Baffle; Exhaust heat exchanger; Waste heat recovery (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920303871
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:266:y:2020:i:c:s0306261920303871
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114875
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().