iSEA: IoT-based smartphone energy assistant for prompting energy-aware behaviors in commercial buildings
Hamed Nabizadeh Rafsanjani,
Ali Ghahramani and
Amir Hossein Nabizadeh
Applied Energy, 2020, vol. 266, issue C, No S0306261920304049
Abstract:
Providing personalized energy-use information to individual occupants enables the adoption of energy-aware behaviors in commercial buildings. However, the implementation of individualized feedback still remains challenging due to the difficulties in collecting personalized data, tracking personal behaviors, and delivering personalized tailored information to individual occupants. Nowadays, the Internet of Things (IoT) technologies are used in a variety of applications including real-time monitoring, control, and decision-making due to the flexibility of these technologies for fusing different data streams. In this paper, we propose a novel IoT-based smartphone energy assistant (iSEA) framework which prompts energy-aware behaviors in commercial buildings. iSEA tracks individual occupants through tracking their smartphones, uses a deep learning approach to identify their energy usage, and delivers personalized tailored feedback to impact their usage. iSEA particularly uses an energy-use efficiency index (EEI) to understand behaviors and categorize them into efficient and inefficient behaviors. The iSEA architecture includes four layers: physical, cloud, service, and communication. The results of implementing iSEA in a commercial building with ten occupants over a twelve-week duration demonstrate the validity of this approach in enhancing individualized energy-use behaviors. An average of 34% energy savings was measured by tracking occupants’ EEI by the end of the experimental period. In addition, the results demonstrate that commercial building occupants often ignore controlling over lighting systems at their departure events that leads to wasting energy during non-working hours. By utilizing the existing IoT devices in commercial buildings, iSEA significantly contributes to support research efforts into sensing and enhancing energy-aware behaviors at minimal costs.
Keywords: Internet of things; Smartphone; Wi-Fi network; Energy-use behavior; Deep learning; Commercial buildings (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920304049
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:266:y:2020:i:c:s0306261920304049
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114892
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().