The opportunity for smart charging to mitigate the impact of electric vehicles on transmission and distribution systems
Constance Crozier,
Thomas Morstyn and
Malcolm McCulloch
Applied Energy, 2020, vol. 268, issue C, No S0306261920304852
Abstract:
A rapid increase in the number of electric vehicles is expected in coming years, driven by government incentives and falling battery prices. Charging these vehicles will add significant load to the electricity network, and it is important to understand the impact this will have on both the transmission and distribution level systems, and how smart charging can alleviate it. Here we analyse the effects that charging a large electric vehicle fleet would have on the power network, taking into account the spatial heterogeneity of vehicle use, electricity demand, and network structure. A conditional probability based method is used to model uncontrolled charging demand, and convex optimisation is used to model smart charging. Stochasticity is captured using Monte Carlo simulations. It is shown that for Great Britain’s power system, smart charging can simultaneously eliminate the need for additional generation infrastructure required with 100% electric vehicle adoption, while also reducing the percentage of distribution networks which would require reinforcement from 28% to 9%. Discussion is included as to how far these results can be extended to other power systems.
Keywords: Distribution system; Electric vehicles; Smart charging; Transmission system (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920304852
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304852
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114973
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().