Assessment of wind power scenario creation methods for stochastic power systems operations
Benjamin Rachunok,
Andrea Staid,
Jean-Paul Watson and
David L. Woodruff
Applied Energy, 2020, vol. 268, issue C, No S0306261920304980
Abstract:
Probabilistic scenarios of renewable energy production, such as wind, have been gaining popularity for use in stochastic variants of power systems operations scheduling problems, allowing for optimal decision-making under uncertainty. The quality of the scenarios has a direct impact on the value of the resulting decisions, but until now, methods for creating scenarios have not been compared under realistic operational conditions. Here, we compare the quality of scenario sets created using three different methods, based on a simulated re-enactment of stochastic day-ahead unit commitment and subsequent dispatch for a realistic test system. We create scenarios using a dataset of forecasted and actual wind power values, scaled to evaluate the effects of increasing wind penetration levels. We show that the choice of scenario set can significantly impact system operating cost, renewable energy use, and the ability of the system to meet demand. This result has implications for the ability of system operators to efficiently integrate renewable production into their day-ahead planning, highlighting the need for the use of performance-based assessments for scenario evaluation.
Keywords: Wind power; Scenario creation; Probabilistic scenarios; Scenario evaluation; Stochastic unit commitment; Production cost modeling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261920304980
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:268:y:2020:i:c:s0306261920304980
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2020.114986
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().